

PRODUCT/PROCESS CHANGE NOTIFICATION

PCN APG-PTS/12/7486 Dated 02 Oct 2012

COPPER WIRE CONVERSION ON BCD2 - PowerSO-20/36 MUAR

Table 1. Change Implementation Schedule

- mail of the state of the stat	
Forecasted implementation date for change	03-Dec-2012
Forecasted availability date of samples for customer	02-Oct-2012
Forecasted date for STMicroelectronics change Qualification Plan results availability	02-Oct-2012
Estimated date of changed product first shipment	02-Jan-2013

Table 2. Change Identification

Product Identification (Product Family/Commercial Product)	BCD2 products assembled in PowerSO 20/36 package
Type of change	Package assembly material change
Reason for change	Company program roadmap
Description of the change	Replacement of gold wires with 2mil copper wires for BCD2 products assembled in PowerSO 20/36 package.
Change Product Identification	No marking change: dedicated traceability printed on labels
Manufacturing Location(s)	1]St Muar - Malaysia

47/.

	Tab	le 3.	List	of	Attac	hments
--	-----	-------	------	----	-------	--------

Customer Part numbers list	
Qualification Plan results	

Customer Acknowledgement of Receipt	PCN APG-PTS/12/7486
Please sign and return to STMicroelectronics	Sales Office Dated 02 Oct 2012
□ Qualification Plan Denied	Name:
□ Qualification Plan Approved	Title:
	Company:
□ Change Denied	Date:
□ Change Approved	Signature:
Remark	

47/.

DOCUMENT APPROVAL

Name	Function
Foletto, Giovanni	Marketing Manager
Rivolta, Danilo	Product Manager
Pintus, Alberto	Q.A. Manager

A7/.

COPPER WIRE CONVERSION

2mil Cu WIRE ON BCD2 - PowerSO-20/36 MUAR

Aim of the current evaluation is to enlarge the scope of 2mil copper wire qualification in PowerSO-20/36 package, including products from BCD2 process technology. The qualification is based on:

- Generic data previously collected: the copper wire bonding has been qualified and implemented on ST automotive products in BCD3, BCD4 and BCD5 process technologies during 2010 and 2011. In PowerSO-20/36 package lines, 2mil and 2.5mil Cu wire are released for mass production in these technologies. Qualification results for the above-mentioned configurations are summarized in SECTION 1.
- Specific qualification trials performed on a BCD2 test-vehicle using 2mil copper wire, organized as follows and detailed in SECTION 2:
 - Dedicated wire-bonding process study to optimize the process parameter window on the specific bond-pad structure of BCD2, similar to the other BCD and especially to BCD3 2 metal option.
 - A "process window" has been defined for the key input parameters of the wire bonder, Bond Force and Bond Power: the window is defined by two corner points (High-High, Low-Low) and a middle point NN. The absence of critical wire-bonding responses inside the defined window has been checked, also exploring the "robustness margin" of the process by increasing / decreasing the a.m. parameters outside the allowed window. A thermal ageing has been performed to ensure that the responses are stable against the key field stress factor for CuAl intermetallic phases.
 - Reliability stress tests on three assembly lots of the BCD2 test-vehicle, bonded with nominal and corner parameters in terms of bonding force and power as defined during the process optimization.
 - The stress conditions have been set according to AEC-Q100 Grade 1 requirements.

SECTION 1: GENERIC DATA

TEST NAME (AEC- Q100)	CONDITIONS [SPEC]	UH27 REJ./S.S.	UK43 REJ./S.S.	UT29 REJ./S.S.	U478 REJ./S.S.
TC (1)	Ta=-50/+150°C,1000 cycles (PC before test according to JEDEC-020D)	0/120	0/120	0/120	0/154
AC	96h @2atm, 121°C (PC before test according to JEDEC-020D)	0/80	0/80	0/80	-
HTSL	Ta=150°C, 1000h	0/120	0/120	0/120	0/110
PTC	Ta=-40/+95°C,1000h Ts =121 °C	NA	NA	0/50	-
WBS	30 wrs / 5 dev. / C _{PK} >1.33	PASSED	PASSED	PASSED	PASSED
WBP	30 wrs / 5 dev. / C _{PK} >1.33	PASSED	PASSED	PASSED	PASSED

NOTES:

Wire pull and ball shear test performed after 1000 TC according to AEC-Q100 requirements

<u>Test-vehicles construction detail</u>

Technical code	:	G8CD*UH27BF1	G9ZS*UK43BCH	G977*UT29BCM	G977*U478CA6
Diffusion process	:	BCD4	BCD5S	BCD5S	BCD3
Wafer diameter	:	8″	6"	8"	6"
Diffusion site	:	AGRATE AG8	CARROLLTON	AGRATE AG8	ANG MO KIO
Die size (mm²)	:	2.98 x 4.17	3.75 x 4.89	3.13 x 3.61	5.24 x 4.05
Metal levels	:	3, AlCu	3, AlSiCu	3, AlCu	2, AlSiCu
Passivation	:	USG-PSG-SiON-Polyimide	PSG+SiON+Polyimide	Teos+PTeo+SiOn+Polyimide	USG+SiON+Polyimide
Back finishing	:	Cr/Ni/Au	Cr/Ni/Au	Cr/Ni/Au	Cr/Ni/Au
Package name	:	PowerSO 20 SLUG UP	PowerSO 36 .43 SLUG UP	PowerSO 20 SLUG DOWN	PowerSO 20 SLUG DOWN
Assembly site	:	MUAR	MUAR	MUAR	MUAR
Leadframe	:	FRAME PSO19+1	FRAME PSO 36L OptB	FRAME PSO-20	FRAME PSO-20
Die attach	:	Pb/Ag/Sn 97.5/1.5/1	Pb/Ag/Sn 97.5/1.5/1	Pb/Ag/Sn 97.5/1.5/1	Pb/Ag/Sn 97.5/1.5/1
Wire bonding	:	Cu, 2 mil	Cu, 2 mil	Cu, 2 mil	Cu, 2.5 mil
Molding compound	:	HITACHI CEL 9240HF10	HITACHI CEL 9240HF10	HITACHI CEL 9240HF10	HITACHI CEL 9240HF10
Lead finishing	:	Matte Sn	Matte Sn	Matte Sn	Matte Sn

SECTION 2: QUALIFICATION TRIALS

2.1 WIRE BONDING PROCESS CENTERING

2.0mil Cu on BCD2-PSO20L Bond Pad Validation

Adrian Pastoral / Nurhashimah Hashim (NPI Lead frame – Muar)
November 2011

STMicroelectronics

Materials and Equipments

Ma	terials and Equipment					
Leadframe	5FT18518					
Lead Finishing	Spot Ag					
Device	G977*U705BC6					
Bond Pad Metallization	2M					
вро	178 X 178um					
Wire Bonder	ASM Extreme (XT19-093)					
Wire	HERAEUS 2.0mil Cu DHF Wire – 5XC13887					
Capillary	GAISER (P/N: 2CA5797M) [follow HQ64L – 2.0mil Cu On BCD3/4/5 150umBPO]					
WCTP Configuration	STD WC and 2deg Slope TP					
Plasma Cleaning	March – Strip Plasma					
Tester	Dage 4000					
Measuring Scope	Olympus – Model STM6-F21-3					

STMicroelectronics

CPE Muar / NPI Leadframe / Bond Pad Validation (BPV)

October-2011

BPV A: 2.0mil Cu on BCD2 Bond Pad Validation (LL-10% - LL - NN - HH - HH+10%)

Machine Type: ASM Extreme (XT19-093) Wire Type: 2.0mil Cu Bond Pad Metallization: 2M Last Metal Layer: AlSiCu / 3.00um

-	Ohio	ctive : 7	To valio	lata II.	10%-1	I -NINI -	- НН -	НН т 10	10/_ 1st k	ond n	aramo	tor						
	CDJE	Cuve .	io valic	iaic LL	10 /0-L	L-IVIN -					arallie	ici.						
	TIME ZERO RESPONSE																	
		BOND	BOND	Lifted metal /	Lifted metal /	Lifted metal /	Lifted metal /	Cratering test	Pull	Test		ual Ball ear	Ball	Size	Ball I	Height	В	AR
ı	.EG	POWER	FORCE	cratering @ Bonding	cratering @ manual pull	cratering @ std pull	cratering @ Ballshear	(agua regia)	(LSL: 1	L7gm)	LSL USL : Targe			15 - 140) : 130um		23 - 38) :: 30um	LSL USL Targ	
		(dac)	(gF)	SS: 1 frame/408 wires	(SS: 306 wires)	(SS: 51 wires)	(SS: 51 wires)	SS: 3 units/51 wires	SS: 51	wires	SS: 51	wires	SS: 1	0 balls	SS: 1	0 balls	SS: 1	0 balls
									Max	58.26	Max	141.7	Max	133.40	Max	32.30	Max	4.46
A1	LL-10%	50	86	0	0	2	0	0	Ave	50.60	Ave	121.04	Ave	131.29	Ave	30.50	Ave	4.31
Α.	LL-10/6	30	80	U	U	2	U	U	Min	28.83	Min	102.45	Min	128.10	Min	28.70	Min	4.06
									CpK	2.31	CpK	1.84						
									Max	59.76	Max	156.55	Max	134.50	Max	31.70	Max	4.74
A2	LL	55	95	0	0	0	0	0	Ave	51.84	Ave	129.38	Ave	131.57	Ave	29.99	Ave	4.39
72		33	33	U	Ŭ	Ŭ	Ŭ	Ŭ	Min	44.74	Min	107.29	Min	129.40	Min	28.00	Min	4.19
									СрК	3.27	СрК	1.70						
									Max	59.92	Max	172.61	Max	134.40	Max	32.40	Max	4.53
А3	NN	60	100	0	0	0	0	0	Ave	51.44	Ave	149.85	Ave	131.57	Ave	31.48	Ave	4.18
70		00	100	Ŭ	Ŭ	Ŭ	Ŭ	ŭ	Min	41.02	Min	132.58	Min	128.80	Min	28.80	Min	4.03
									СрК	2.83	СрК	2.58						
									Max	58.02	Max	179.41	Max	134.00	Max	33.30	Max	4.54
A4	нн	65	105	0	0	0	0	0	Ave	51.87	Ave	156.10	Ave	132.00	Ave	31.71	Ave	4.17
1					-	-	0	-	Min	44.79	Min	140.08	Min	128.40	Min	28.60	Min	3.86
									CpK	3.52	СрК	2.89		405.00		22.00		4.70
									Max	60.19	Max	199.89	Max	135.00	Max	32.80	Max	4.72
A5	HH+10%	72	116	0	0	0	0	0	Ave	51.40	Ave Min	160.24	Ave	131.73	Ave Min	30.35	Ave Min	4.35
		_							Min	42.62		144.77	Min	128.80	Min	27.70	Min	4.06
1									CpK	2.56	CpK	2.30					I	

Summary:

1. LL-10% encountered Lifted Metal during Standard Pull.

2. LL, NN,HH,HH+10% setting passed all response requirements including Ballshear and Pulltest CPK>1.67.

(VID) | leadframe | Pand Pad Validation (BPV) October-2011

STMicroelectronics

CPE Muar / NPI Leadframe / Bond Pad Validation (BPV)

October-2011 0

Fixed Parameters: Gas Flow: 0.8 L/min = C-nozzle, 0.3 L/min = E-torch
Base Time: 25 msec EFO Current: 150mA EFO Time: 1.25 mseC
Machine: ASM Extreme (XT19-093)

BPV A: 2.0mil Cu on BCD2 Bond Pad Validation (LL-10% - LL - NN - HH - HH+10%)

Machine Type: ASM Extreme (XT19-093) Wire Type: 2.0mil Cu Bond Pad Metallization: 2M Last Metal Layer: AlSiCu / 3.00um

Objective: To validate LL-10%-LL-NN - HH - HH+10% 1st bond parameter

				TIME = 168h	rs RESPONSE	@175degC ST	ORAGE																		
LEG		BOND	BOND	Lifted metal / cratering @ manual	Lifted metal /	Lifted metal / cratering @	Pu	ıll Test		dual Ball near															
		POWER	FORCE	pull	cratering @ std pull	Ballshear	(1.5	SL: 17gm)	LSL = 80g USL = 226g Target = 153g SS: 51 wires																
			(gF)	(SS: 306 wires)	(SS:51 wires)	(SS:51 wires)	SS	51 wires																	
							Max	61.47	Max	192.26															
A 1	LL-10%	50	86	0	0	0	Ave	50.44	Ave	155.13															
~.		30	00	Ů	U	ŭ	Ŭ	Ů				, and		, i			"	U	U		U	Min	43.39	Min	98.18
							СрК	2.91	СрК	1.61															
							Max	58.86	Max	204.86															
A2	LL	55	95	0	0	0	Ave	50.16	Ave	165.45															
							Min	43.97	Min	132.90															
							СрК	2.78	СрК	1.94															
		N 60															Max	59.90	Max	229.97					
А3	NN		100	0	0	0	Ave	50.54	Ave	181.38															
							Min	41.51 2.68	Min	153.25 2.16															
	-						CpK Max	60.46	CpK Max	2.16															
						0	Ave	50.52	Ave	188.97															
Α4	HH	65	105	0	0		Min	42.24	Min	159.90															
A4						CpK	2.66	CoK	3.34																
							Max	59.63	Max	247.08															
	HH+10						Ave	50.15	Ave	196.83															
A5	%	72	116	0	0	0	Min	37.62	Min	161.97															
	/0						CnK	2 63	CnK	2 63															

1. LEG A1 having low Ballshear CpK <1.67.
2. LEGS A2, A3, A4 and A5 passed all response requirements including Ballshear and Pulltest CpK >1.67.

STMicroelectronics CPE Muar / NPI Leadframe / Bond Pad Validation (BPV) October-2011 0

BPV A: 2.0mil Cu on BCD2 Bond Pad Validation (LL-10% - LL - NN - HH - HH+10%)

Machine Type: ASM Extreme (XT19-093) Wire Type: 2.0mil Cu Bond Pad Metallization: 2M Last Metal Layer: AlSiCu / 3.00um

Objective : To validate LL-10%-LL-NN – HH - HH+10% 1st bond parameter

				TIME = 336h	rs RESPONSE	@175degC ST	TORAGE										
		BOND	BOND	Lifted metal / cratering @ manual	Lifted metal /	Lifted metal / cratering @	Pu	ıll Test	Individual Ball Shear								
	LEG	POWER	FORCE	pull			(L	(LSL: 17gm)		g 6g 53g							
		(dac)	(gF)	(SS: 306 wires)	(SS:51 wires)	(SS:51 wires)	SS: 51 wires										
							Max	60.86	Max	172.55							
A1	LL-10%	50	86	0	0	0	Ave	52.04	Ave	148.83							
Α.	LL-10/6	30	80	U	U		Min	37.08	Min	125.73							
							CpK	2.58	СрК	2.44							
					0					Max	58.97	Max	187.42				
A2	LL	55	95	0		0	Ave	51.43	Ave	161.28							
~~		33	33	U		Ů,	Ü	U	Ŭ	U	Min	44.73	Min	132.08			
							СрК	3.38	СрК	2.84							
							Max	60.16	Max	184.46							
А3	NN	60	100	0	0	0	Ave	50.61	Ave	168.49							
,		00	100	3	Ŭ	·		· · ·	ŭ		ŭ	ı ı ı	ŭ	Min	44.17	Min	132.99
							СрК	2.80	СрК	2.79							
							Max	58.73	Max	189.79							
Α4	нн	65	105	0	0	0	Ave	50.57	Ave	172.33							
,,,							Min	41.63	Min	140.89							
							СрК	2.67	СрК	3.27							
							Max	58.54	Max	191.96							
Α5	HH+10%	72	116	0	0	0	Ave	50.39	Ave	176.63							
,							Min	40.87	Min	144.55							
			l				CpK	2.62	CpK	3.18							

- All LEGS passed Response requirements including CpK at >1.67.

Fixed Parameters: Gas Flow: 0.8 L/min = C-nozzle, 0.3 L/min = E-torch

Base Time: 25 msec EFO Current: 150mA EFO Time: 1.25 mseC

Machine: ASM Extreme (XT19-093)

2.0mil Cu on BCD2 Bond Pad Validation **Robust Validation**

Machine Type: ASM Extreme (XT19-093) Wire Type: 2.0mil Cu Bond Pad Metallization: 2M Last Metal Layer: AlSiCu / 3.00um

Objective: To do robust validation beyond the LL and HH parameter setting..

LEG	BOND	BOND Lifted metal / cratering @ Wirebond		Lifted metal / cratering @ Manual Pull
	(dac)	(gF)	(SS: 102 wires)	(SS: 102 wires)
LL-20%	44	76	0	1
LL-30%	39	67	0	3
LL-40%	33	57	0	11
LL-50%	28	46	0	19
LL-60%	22	36	2	22

	Robust Valid	dation Resp	onse		
LEG	BOND	BOND	Lifted metal / cratering @ Wirebond (SS: 102 wires)	Lifted metal / cratering @ Manual Pull (SS: 102 wires)	
	(dac)	(gF)	,	` '	
HH+20%	78	126	0	0	
HH+30%	85	137	0	0	
HH+40%	91	147	5	18	
HH+50%	-	_	-	-	
HH+60%	-	-	-	-	

Fixed Parameters: Gas Flow: 0.8 L/min = C-nozzle, 0.3 L/min = E-torch

Machine: ASM Extreme (XT19-093)

Summary:

- 1. Low parameter side encountered Lifted Metal during WB at LL-60%, but Lifted @ Manual pull seen from LL-20%.
- 2. High parameter side encountered Cratering during WB at HH+40%. Manual Pull Cratering also seen at HH+40%.

STMicroelectronics

CPE Muar / NPI Leadframe / Bond Pad Validation (BPV)

October-2011 0

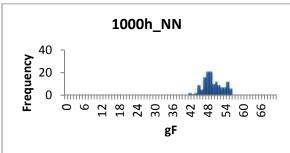
Base Time: 25 msec EFO Current: 150mA EFO Time: 1.25 mseC

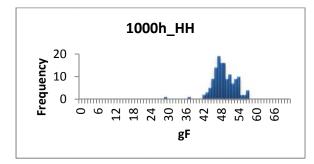
2.2 RELIABILITY EXERCISE

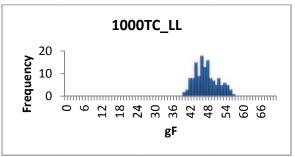
				Reliak	oility Test Status			
						Fails/SS		
No	Test Name	Prec	Condition/ Method	Steps	Steps	9920507205 Lot A (NN Parameter)	99205072ZY Lot B (LL Parameter)	99205072ZZ Lot C (HH Parameter)
	1 PC (JL3 STD)		Reflow Profile = J-STD-020D	Final	ATE	0 def / 159pcs	0 def / 159pcs	0 def / 159pcs
1					TSAM	0 del / 30pcs	0 del / 30pcs	0 del / 30pcs
		(Tmax = 245°C)		CSAM TOP	0 del / 30pcs	0 del / 30pcs	0 del / 30pcs	
				500 Cycle	ATE	0 def/82pcs	0 def / 82pcs	0 def / 82pcs
					TSAM	0 del / 15pcs	0 del / 15pcs	0 del / 15pcs
			",""	CSAM TOP	0 del / 15pcs	0 del / 15pcs	0 del / 15pcs	
2	2 TC	Yes	Yes Ambient Temp Range = -50°C/+150°C		ATE	0 def / 77pcs	0 def / 77pcs	0 def / 77pcs
				1000	TSAM	0 del / 15pcs	0 del / 15 pcs	0 del / 15pcs
		Cycle	CSAM TOP	0 del / 15pcs	0 del / 15pcs	0 del / 15pcs		
					CSAM BOT	0 del / 15pcs	0 del / 15pcs	0 del / 15pcs
			Ambient Temp Range =	100	ATE	0 def/77pcs	0 def / 77pcs	0 def / 77pcs
3 ENV SEQ	Yes TC = -50°C/+150°C	Cycle +	TSAM	0 del / 15pcs	0 del / 15pcs	0 del / 15pcs		
			PPT = 121°C / 2 Atm	96hrs	CSAM TOP	0 del / 15pcs	0 del / 15pcs	0 del / 15pcs
					ATE	0 def/50pcs	0 def / 50pcs	0 def / 50pcs
4 HTS	Ambient Temp Range = 1 No 150°C	500Hrs	T-SAM	0 del / 15pcs	0 del / 15pcs	0 del / 15pcs		
			CSAM TOP	0 del / 15pcs	0 del / 15pcs	0 del / 15pcs		
			ATE	0 def/45pcs	0 def / 45pcs	0 def / 45pcs		
				1000Hrs -	TSAM	0 del / 15pcs	0 del / 15pcs	0 del / 15pcs
					CSAM TOP	0 del / 15pcs	0 del / 15pcs	0 del / 15pcs
					CSAM BOT	0 del / 15pcs	0 del / 15pcs	0 del / 15pcs

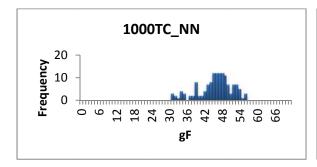
READOUT ITEMS LEGENDA:

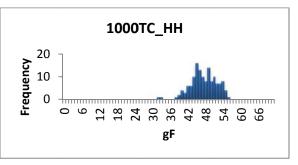
ATE: Automatic Test Equipment ("X def" means X functional failures)


TSAM: Transmission Scanning Acoustic Microscope ("X del" means X delaminated units)


CSAM TOP: Reflection Scanning Acoustic Microscope ("X del" means X delaminated units)




WPT has been performed after HTSL and TC stress tests for wire bonding integrity check; correct readings have been observed and no ball lifts occurred. Relevant force distributions are here below reported.



Test-vehicles construction detail

Technical code	:	A977*UB25CA6			
Diffusion process	:	BCD2			
Wafer diameter	:	8"			
Diffusion site	:	ANG MO KIO			
Die size (mm²)	:	5.21 x 4.51			
Metal levels	:	2, AlSiCu			
Passivation	:	SiN (nitride)			
Back finishing	:	RAW Silicon			

Package name
Assembly site
Leadframe
Die attach
Wire bonding
Molding compound
Lead finishing

PowerSO 20 SLUG DOWN
MUAR
FRAME PSO-20
Pb/Ag/Sn 97.5/1.5/1
Cu, 2 mil
HITACHI CEL 9240HF10
Matte Sn

CHANGE TRACEABILITY:

Full traceability of the change is guaranteed through dedicated finished good codifications printed on product labels.

CHANGE IMPLENMENTATON:

We are ready to implement the change in production from beginning of December 2012 onward, upon customer's agreement.

Qualification samples are available, on demand, through our Sales offices.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time. without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2012 STMicroelectronics - All rights reserved.

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morroco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

